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denote the coordinate of the object at time t. The velocity (or “instantaneous velocity”) of
the object at time t is:

v(t) = s0(t).

The acceleration of the object at time t is:

a(t) = v0(t) = s00(t).

Notation Let y = f(x).

1st derivative of f :
dy

dx
=

df

dx
= f 0(x)

2nd derivative of f :
d2y

dx2
=

d2f

dx2
= f

00
(x)

...
...

n-th derivative of f :
dny

dxn
=

dnf

dxn
= f (n)(x)

Example 5.2.1.

1.
dn

dxn
(ex) = ex,

dn

dxn
(ax) = ax · (ln a)n.

2. y = xn, n 2 N.

y(m) =

8
>><

>>:

n(n� 1)(n� 2) · · · (n�m+ 1)xn�m, if m < n,

n(n� 1)(n� 2) · · · 2 · 1 = n!, if m = n,

0, if m > n.

Example 5.2.2. Let y be defined implicitly by the equation x2 + y2 + exy = 2. Find y0 and
y00 at x = 1.

Solution. Differentiate both sides of the preceding equation with respect to x to get

2x+ 2yy0 + exy(y + xy0) = 0. ����(1)

Then differentiate both sides of the equation with respect to x one more time to get

2 + 2y0y0 + 2yy00 + exy(y + xy0)2 + exy(2y0 + xy00) = 0. ����(2)
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Inserting x = 1, y = 0 into Equations (1), (2), we have:

y0|x=1 = �2,

y00|x=1 = �10.

⌅

Example 5.2.3. Suppose that y = e�x satisfies y00 � 2y0 � 3y = 0 (a “differential equation”).
Find the constant �.

Solution. y = e�x implies that y0 = �e�x, which in turn implies y00 = �2e�x.

Combining the preceding identities with the equation y00 � 2y0 � 3y = 0, we have:

(�2 � 2�� 3)e�x = 0.

Since e�x 6= 0 for all x,
�2 � 2�� 3 = 0,! � = �1, 3.

⌅

More generally, if y = e�x solves

any
(n) + an�1y

(n�1) + · · ·+ a1y
0 + a0y = 0,

then
(an�

(n) + an�1�
(n�1) + · · ·+ a1�+ a0)e

�x = 0,

)
an�

(n) + an�1�
(n�1) + · · ·+ a1�+ a0 = 0.

Exercise 5.2.1. Find constants � such that y = e�x satisfies y000 � 2y00 � 3y0 = 0.
Answer: � = �1, 0, 3.
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Chapter 6: Application of Derivatives I

Learning Objectives:
(1) Apply L’Hôpital’s rule to find limits of indeterminate forms.
(2) Discuss increasing and decreasing functions.
(3) Define critical points and relative/absolute extrema of real functions of 1 variable.
(4) Use the first derivative test to study relative/absolute extrema of functions.

6.1 Limits of indeterminate forms and L’Hôpital’s rule

Recall the Remark in the end of Section 2.4 regarding exceptional cases of limits, which can
not be computed using the algebraic rules of limits in Proposition 2, but the limits might still
exist. Limits of this type are said to be of indeterminate forms.

6.1.1 Limits of indeterminate forms
0

0
,
1
1

Consider lim
x!a

f(x)

g(x)
,

1. if lim
x!a

f(x) = A, lim
x!b

g(x) = B 6= 0, A,B 2 R, then by the quotient rule,

lim
x!a

f(x)

g(x)
=

lim
x!a

f(x)

lim
x!a

g(x)
=

A

B
.

2. if lim
x!a

f(x) = lim
x!a

g(x) = 0 (±1), then the quotient rule is not applicable. Limits of

this type are said to be of indeterminate form type
0

0
or type 1

1

For example,

lim
x!1

x2 � 1

x3 � 1
,

✓
type

0

0

◆

lim
x!+1

x+ 1

2x+ 3
, lim

x!+1

�x+ 1

2x3
,

⇣
type

1
1

⌘
.
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Theorem 6.1.1 (L’Hôpital’s rule for limits of types
0

0
,
1
1).

Let f(x), g(x) be differentiable and suppose that g0(x) 6= 0 near the point a.

If
lim
x!a

f(x) = lim
x!a

g(x) = 0 or lim
x!a

f(x) = lim
x!a

g(x) = ±1,

then
lim
x!a

f(x)

g(x)
= lim

x!a

f 0(x)

g0(x)
.

Remark. (a) An intuitive explanation: When f(a) ⇡ 0 ⇡ g(a),

f(x)

g(x)
⇡ f(x)� f(a)

g(x)� g(a)
=

f(x)�f(a)
x�a

g(x)�g(a)
x�a

.

(b) The statement of the theorem still holds if “x ! a” is replaced by “x ! ±1” or “x ! a±”.
It also holds if limx!a f(x) = ±1 lim

x!a
g(x) = ⌥1. (Use limx!a

f(x)
g(x) = � limx!a

�f(x)
g(x) and

apply the theorem to limx!a
�f(x)
g(x) .)

Example 6.1.1. Limits of type
0

0

1.

lim
x!1

x2 � 1

x3 � 1
(check condition 1:

0

0
)

= lim
x!1

2x

3x2
(check condition 2: this limit is

2

3
)

=
2

3
.

Remark. Alternatively, use the “canceling common factors” trick in the previous chap-
ters.

2.

lim
x!1

ex � ep
x� 1

(the limit is of type
0

0
)

= lim
x!1

ex

1
2x

� 1
2

=2e.
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3.

lim
x!0+

ln(1 + x)

x2
(type

0

0
)

= lim
x!0+

1
1+x

2x

=+1.

Example 6.1.2. Limits of type
1
1

1.

lim
x!+1

�x+ 1

2x+ 3
(type

1
1)

= lim
x!+1

�1

2

=� 1

2
.

Remark. The same result can be obtained by dividing both the numerator and the
denominator by x.

2.

lim
x!+1

lnx

xn
, n 2 N (type

1
1)

= lim
x!+1

1
x

nxn�1

= lim
x!+1

1

nxn

=0.

Remark.

1. L’Hôpital’s rule can NOT be applied for determinate form.

For example, lim
x!1

x+ 1

x+ 2
=

2

3
, but lim

x!1

(x+ 1)0

(x+ 2)0
=

1

1
= 1.

2. If lim
x!a

f 0(x)

g0(x)
is still

0

0
,
1
1 , then repeat L’Hôpital’s rule.

3. L’Hôpital’s rule can be used to justify the previous assertion that as x ! 1, higher de-
gree polynomials “grows faster” than lower degree polynomials; exponential functions
grow faster than any polynomials; log functions grow slower than any polynomials.
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